Complete convergence for weighted sums of pairwise independent random variables
نویسندگان
چکیده
منابع مشابه
Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables
Let be a sequence of arbitrary random variables with and , for every and be an array of real numbers. We will obtain two maximal inequalities for partial sums and weighted sums of random variables and also, we will prove complete convergence for weighted sums , under some conditions on and sequence .
متن کاملOn the Complete Convergence ofWeighted Sums for Dependent Random Variables
We study the limiting behavior of weighted sums for negatively associated (NA) random variables. We extend results in Wu (1999) and a theorem in Chow and Lai (1973) for NA random variables.
متن کاملOn Complete Convergence for Weighted Sums of -Mixing Random Variables
Copyright q 2010 Wang Xuejun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Some results on complete convergence for weighted sums ∑n i 1 aniXi are presented, where {Xn, n ≥ 1} is a sequence of φ-mixing random variables an...
متن کاملcomplete convergence and some maximal inequalities for weighted sums of random variables
let be a sequence of arbitrary random variables with and , for every and be an array of real numbers. we will obtain two maximal inequalities for partial sums and weighted sums of random variables and also, we will prove complete convergence for weighted sums , under some conditions on and sequence .
متن کاملStrong Laws for Weighted Sums of Negative Dependent Random Variables
In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Mathematics
سال: 2017
ISSN: 2391-5455
DOI: 10.1515/math-2017-0044